- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Ito, Michael (3)
-
Koutra, Danai (2)
-
Wiens, Jenna (2)
-
Chen, Dexiong (1)
-
Glaser, Yannik (1)
-
Sadowski, Peter (1)
-
Zhu, Jiong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 5, 2026
-
Ito, Michael; Zhu, Jiong; Chen, Dexiong; Koutra, Danai; Wiens, Jenna (, International Conference on Artificial Intelligence and Statistics, PMLR 258)Free, publicly-accessible full text available May 5, 2026
-
Ito, Michael; Glaser, Yannik; Sadowski, Peter (, IEEE)Advances in metagenomic sequencing have provided an unprecedented view of the microbial world, but untangling the web of microbe interdependencies and the complex relationship between microbiome and host is a major challenge in biology. New statistical methods are needed to analyze metagenomic data and infer these relationships. Focusing on amplicon sequencing data, we present methods for leveraging phylogenetic information in deep neural network models and for transfer learning from large data repositories. This approach is demonstrated in experiments using data from the Earth Microbiome Project (EMP) and a dataset of 1500 samples from Waimea Valley on the island of Oahu, Hawaii.more » « less
An official website of the United States government
